

Course Title:	Quantum Mechanics-1		
Course Code:	PHYS26363		
Program: Physi	S		
Department: Ph	Department: Physics		
College: Scien	ce		
Institution: Univ	ersity of Bisha		
Version: 3			
Last Povision Da	6 - 25 July 2022		

2023

TP-153

Table of Contents

A. General information about the course:	3
1. Course Identification	3
2. Teaching mode (mark all that apply)	3
3. Contact Hours (based on the academic semester)	4
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	4
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
1. References and Learning Resources	6
2. Required Facilities and equipment	6
F. Assessment of Course Quality	6
G. Specification Approval Data	7

A. General information about the course:

3

1. Course Identification

1. Credit hours:

2. Course type

	sourse type				
Α.	University	College 🗆	Department⊠	Track	Others
В.	Required 🖂	Elective			
3. Level/year at which this course is offered: 6 th Level / 3 rd year					/ear

4. Course general Description

This course deals primarily with the wave function and the Schrödinger equation. The course covers the postulates of quantum mechanics, Particle in one- dimensional box with walls of infinite height, Harmonic oscillator, particle in a three-dimensional box, and Schrödinger's equation for the Hydrogen atom.

5. Pre-requirements for this course:

PHYS26361 Modern Physics

6. Co- requirements for this course:

NA

7. Course Main Objective(s)

Recognize the fundamentals of quantum mechanics.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	3	100%
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

No	Activity	Contact Hours
1.	Lectures	45
2.	Laboratory/Studio	
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	45

B. Course Learning Outcomes (CLOs), Teaching Strategies and

Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods	
1.0	Knowledge and understanding				
1.1	Define the wave function.	K.2			
1.2	Recognize commutation relations in quantum mechanics.	K.2	Locturos	Written test	
1.3	Describe the time-independent Schrödinger equation.	К.2	Solve problems	Homework	
1.4	Identify the quantum mechanics in three dimensions.	K.2		QUIZZES	
2.0	Skills				
2.1	Solve problems in the wave function.	S.1			
2.2	Solveproblemsinthecommutationrelationsinquantum mechanics.	S.1	Lectures	Written test Reports	
2.3	Apply the time-independent Schrödinger equation.	S.1	solve problems.	Quizzes	
2.4	Analyze Schrödinger equation in three dimensions.	S.1			
3.0	Values, autonomy, and responsib	ility			
3.1	Exhibit self-learning skills independently.	V.2	Self-learning	Reports Presentation	

C. Course Content

No	List of Topics	Contact Hours
1.	The Wave Function1. The Schrödinger Equation2. The Statistical Interpretation	4.5
2.	 Probability Normalization 	4.5
3.	 Momentum The Uncertainty Principle 	4.5
4.	Formalism	4.5
5.	 2. Function spaces 3. The generalized statistical interpretation 	4.5
	The Time-Independent Schrödinger Equation	
6.	 Stationary States The Free Particle 	4.5
7.	 The Infinite Square Well The Delta-Function Potential 	4.5
8.	 The Finite Square Well The Scattering Matrix 	4.5
	Quantum Mechanics in Three Dimensions	
9.	 Schrödinger Equations in spherical coordinates. The Harmonic Oscillator 	4.5
10.	 The Hydrogen Atom Angular Momentum and Spin 	4.5
	Total	45

Table: The matrix of consistency between the content and the learning outcomes of the course.

		Course Learning Outcomes							
	1.1	1.2	1.3	1.4	2.1	2.2	2.3	2.4	3.1
Topic 1	✓				✓				✓
Topic 2	✓				✓				✓
Topic 3	✓				✓				✓
Topic 4		✓				✓			✓
Topic 5		✓				✓			√
Topic 6			✓				✓		✓
Topic 7			✓				✓		√
Topic 8			✓				✓		✓
Topic 9				✓				✓	√
Topic 10				✓				✓	√

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Homework, quizzes, reports, and presentation.	1: 15	10 %
2.	First term exam	7: 8	20 %
3.	Second term exam	12:13	20 %
4.	Final exam	End of Semester	50 %

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	- Introduction to quantum mechanics, 4rd edition, David J. Griffiths, Upper Saddle River, New Jersey, (2011).
Supportive References	 Advanced Quantum Theory, S.L Fields, Gupta,1st edition, (1982). Understanding Quantum Mechanics, Omnès, Roland. Princeton University Press (1999).
Electronic Materials	 Blackboard. PowerPoint presentations. Digital library of University of Bisha https://ub.deepknowledge.io/Bisha
Other Learning Materials	NA

2. Required Facilities and equipment

Items	Resources
facilities	Classrooms, Physics lab.
Technology equipment	Data show or smart board.
Other equipment	NA

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Extent of achievement of course learning outcomes.	Teachers, students.	Direct (Final exams), Indirect (Questionnaire).
Effectiveness of teaching.	Teachers, students.	Indirect (Questionnaire)
Effectiveness of assessment.	Teachers, students.	Indirect (Questionnaire)

Assessment Areas/Issues	Assessor	Assessment Methods
Quality of learning resources	Teachers, students.	Indirect (Questionnaire)
Quality of facilities available	Teachers, students.	Indirect (Questionnaire)
Fairness of evaluation	Peer reviewer.	Direct (Final exams reevaluation).

G. Specification Approval Data

COUNCIL /COMMITTEE	College of Science Council
REFERENCE NO.	20
DATE	17 August 2023

